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superconductor–normal-metal–d-wave superconductor
junction
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Abstract. We show that in a long clean s-wave superconductor–normal-metal–d-wave super-
conductor junction the Josephson current is periodic in the superconducting phase differenceϕ

with periodπ instead of 2π . The frequency of the ac Josephson effect and the period of the
magnetic interference pattern become 2ωJ = 4eV and80/2 respectively. This effect is due to
the coexistence in the normal layer of current-carrying Andreev levels with phase differencesϕ

andϕ + π , and is robust with respect to finite temperature and weak elastic scattering.

The Josephson effect in superconductor–normal-metal–superconductor (SNS) junctions
differs from the effect in tunnelling junctions in several important respects. In particular, in
a long clean SNS junction atT = 0, the Josephson current,IJ (ϕ), is a sawtooth function of
the superconducting phase differenceϕ (Ishii 1970, Svidzinskiiet al 1971), in contrast to
the sinϕ dependence in tunnelling junctions (Barone and Paternò (1982), ch 1). The reason
for this behaviour is that the Josephson current is transferred through the normal layer by
current-carrying Andreev levels, formed due to subgap Andreev reflections of electrons and
holes from the non-diagonal pairing potential of superconductors (Kulik 1969, Bardeen and
Johnson 1972). The positions of these levels, and therefore the current, depend onϕ.

In this letter we consider the case in which one of the superconductors has d-wave pairing
symmetry: an s-wave superconductor–normal-metal–d-wave superconductor (SND) junction
(figure 1). There is a strong evidence that such pairing is realized in superconducting
cuprates—in particular, results obtained from phase-sensitive measurements (Van Harlingen
1995, Tsueiet al 1996, Kouznetsovet al 1997). The experimental realization of an SND
junction is feasible, and could provide additional information on the superconductivity
in cuprates. Various types of Josephson junction between conventional and d-wave
superconductors are being actively investigated (Yip 1993, Devereaux and Fulde 1993,
Tanaka 1994, Zhuet al 1996, Zagoskin 1997, Riedel and Bagwell 1997, Hucket al 1997).
In particular, Yip (1993) considered a point contact between superconductors with different
pairing symmetries (a contact with lengthL � min(ξ0), the lesser of the superconducting
coherence lengths of the two superconductors). He demonstrated that the period of theIJ (ϕ)

dependence can be 2π/n, with n an integer. This result could not be directly applied to the
case of cuprates, where the opposite limit(L � max(ξ0)) is more likely to hold. Tanaka
(1994) showed that in a tunnelling junction parallel to thec-axis the Josephson current is
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Figure 1. An s-wave superconductor–normal-metal–d-wave superconductor junction (an SND
junction). We can choose a real order parameter for the d-wave superconductor. The Andreev
zero- andπ -levels are shown schematically.

governed by the contribution of the second order in1, leading to a sin 2ϕ current–phase
dependence.

In this letter we show that SND junctions will exhibit a half-periodic Josephson effect
(I (ϕ) being aπ -periodic function of the phase), because they contain two distinct sets
of Andreev levels, coupled to positive and negative lobes of the d-wave order parameter,
respectively.

The physical picture of the effect is as follows. In d-wave superconductors the order
parameter can have either sign, according to the direction of the momentum on the Fermi
surface, and so can be treated as an additional, intrinsic phaseπ (Sigrist and Ueda 1991).
Therefore, the Andreev levels in the SND junction depend (instead of onϕ) on the effective
phase difference:

ϕ̃(k‖) = ϕ + πϑ(−1q̂) (1)

whereϑ(x) is the Heaviside step function. The unit vectorq̂ gives the direction of the
wave vector of the transmitted state in a d-wave superconductor,q, with componentsk‖
(parallel to the interface) andqz(E) (see figure 1). There are thus two sets of Andreev levels
in the normal layer: withϕ̃ = ϕ (1q̂ positive) and withϕ̃ = ϕ + π (1q̂ negative). The
Josephson current through theπ -levels will be a 2π -periodic function of the phase, shifted
by π with respect to the current carried by the zero-levels, like in the so-calledπ -junction
with a negative critical current (Sigrist and Rice 1992).

The resulting current isπ -periodic in phase (see figure 2(b)). From the Josephson
relation∂tϕ = 2eV we see that the Josephson frequency doubles:ω̃J = 2ωJ = 4eV .

In our further analysis we assume that the following conditions are satisfied:

max(ξ0)� L� lT , lε, li (2)

whereL is the width of the normal-metal layer, max(ξ0) is the larger of the correlation
lengths of the two superconductors,li , lε are the elastic and inelastic scattering length
respectively, andlT = vF /(2πkBT ) is the normal-metal coherence length in the clean
limit. The latter is the characteristic coupling length in the SNS junction (Kulik 1969),
and can be much larger thanξ0 (especially in the case of cuprates). In silver, e.g. at 1 K,
lT = 1.67× 10−4 cm, compared toξ0 ∼ 10−5 cm typical for conventional superconductors.
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Figure 2. (a) Current–phase characteristics of a clean SNS junction at zero temperature: the
conventional (‘zero’) junction (solid line); and theπ -junction (dashed line). (b) Current–
phase characteristics of the half-periodic Josephson current:Z = 0, T = 0 (solid line);
Z = 21/2−1, T = 0 (dashed line); andZ = 0, L/lT = 0.2 (chain line); andZ = 0, L/lT = 0.5
(dotted line). The imbalance functionZ is defined in equation (9). (c) Current–phase
characteristics of the half-periodic Josephson current at finite normal scattering:Z = 0;L/li =
0.05 (dashed line); andL/li = 0.1 (solid line).

Andreev levels in the normal layer are obtained by solving Bogoliubov–de Gennes
equations for the two-component wave function in both of the superconductors and the
normal layer, separately for eachk‖-mode, and matching the wave functions at the interfaces
(see e.g. Hurd and Wendin (1994), and references therein). For the SND junction we have(
H− (k2

F − k2
‖)/2m 1(z)

1∗(z) −(H− (k2
F − k2

‖)/2m)

)(
u(z)

v(z)

)
= E

(
u(z)

v(z)

)
. (3)

HereH = −(1/2m)∇2
z is the one-particle Hamiltonian;1(z) is the non-diagonal potential
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(which is zero in a normal layer,1(1)eiϕ in an s-wave superconductor, and1(2)
q̂ in a d-wave

superconductor; we choose real1(1), 1
(2)
q̂ ). This standard approximation is justified by the

conditionξ0� L. We assume for simplicity the same value ofkF in all three regions. The
corrections due to the differences inkF , and the finite normal scattering by the interface
will be considered elsewhere.

In the normal layer the normal component of the momentum of an electron (hole) with
energyE and tangential momentumk‖ is

ke,hz (E) =
√
k2
F − k2

‖ ± 2mE.

In the superconductor, for a subgap quasiparticle,E < |1|, this transforms into

q±z (E) = kz(0)

√√√√1± i
|1|

kz(0)2/2m

√
1− E2

|1|2 . (4)

If |1| � k2
z (0)/2m, then Req±z ≈ kz(0), i.e. the quasiparticle momentum does not change

direction in the superconductor:q̂ ≈ k̂,k = (k‖, kz). Therefore the momentum of the quasi-
particle in the normal layer determines the value1k̂ of the d-wave order parameter entering
the Bogoliubov–de Gennes equations (3), and the effective phase difference for a given
Andreev level (see figure 1).

Under the above conditions, the energies of low-lying Andreev levels(E � |1|) are
given by

(kez(E)− khz (E))L± ϕ̃(k‖) = π(2n+ 1) n = 0,±1,±2, . . .. (5)

This is a direct generalization of the result given by Kulik (1969).
The Josephson current through the contact can be calculated using the low-energy

excitation spectrum determined from (5) (Bardeen and Johnson 1972, van Weeset al 1991).
At T = 0,

IJ (ϕ) =
∑
κ

2ev(κ)Fz

πL

∞∑
n=1

(−1)n+1 sinnϕ̃(κ)

n
. (6)

Hereϕ̃(κ) is the effective phase shift, andv(κ)Fz is the component of the Fermi velocity that is
normal to the interface in a mode with tangential momentumk‖ = κ: (mv(κ)Fz )

2+κ2 = k2
F .

The summation∑
κ

= S
∫
|κ|6kF

dκx dκy

is extended over all allowed tangential modes†; S is the area of the junction.
It follows from (6) that the Josephson current in a clean SND junction is indeed a sum

of independent contributions of zero- andπ -modes:

IJ (ϕ) = I0(α
(+)F (ϕ)+ α(−)F (ϕ + π)) = I0

2
(F (ϕ)+ F(ϕ + π)+ Z(F(ϕ)− F(ϕ + π))).

(7)

Here

F(x) = 2

π

∞∑
n=1

(−1)n+1 sinnx

n

† The corrections from ‘grazing’ trajectories (withk‖ ≈ kF ) are negligible, since the parameter|1(1,2)|/EF � 1.
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is the 2π -periodic sawtooth of unit amplitude; also

I0 = e

L

∑
κ

v
(κ)
Fz

is the critical current of a clean SNS junction at zero temperature (Svidzinskiiet al 1971,
Bardeen and Johnson 1972); and the weight factors are

α(±) =
∑
κ

±
v
(κ)
Fz

/∑
κ

v
(κ)
Fz

where the±-summation is extended over zero- andπ -modes respectively.
The ratio of the two contributions in (7) generally depends on the orientation of the

d-wave superconductor with respect to the interface, parametrized by certain anglesθa,
through the imbalance function

Z(θa) = α(+)(θa)− α(−)(θa)
α(+)(θa)+ α(−)(θa) |Z(θa)| 6 1. (8)

Z = ±1 corresponds to purely zero- orπ -junction, respectively;Z = 0 when the amplitudes
of the contributions from zero- andπ -levels are equal. Due to the non-sinusoidal form of
the current–phase characteristics, the current is not zero ifZ(θa) = 0. On the contrary, the
resulting current isπ -periodic in phase (see figure 2(b)), and its critical value is halved.
Generally, the ground state of the system is doubly degenerate, with the equilibrium phase
difference across the junction

±φ0 = ±1− Z
2

π.

The simplest case is an SND junction where thex2–y2-plane of the d-wave super-
conductor is parallel to the interface (see figure 3(a)); thenZ(θa) ≡ 0 by symmetry. For
cuprates, this (001) plane is also the easiest-cleavage plane, which makes it the best candidate
for experimental observation of the effect.

Another possibility is to choose the interface normal to that plane. In this case the
imbalance function depends on a single angleθ between the SN interface and the nodal
direction in thex2–y2-plane (see figure 3(b)), andZ(θ) = ±(√2 cos[θ − π/4] − 1) (0 6
θ 6 π/2). Since |Z(θ)| 6 √2− 1, the Josephson current in this case always contains a
π -periodic component (see figure 2(b))†.

Starting from (7), it is straightforward to calculate the magnetic interference pattern (the
dependence of the critical current on the external magnetic field) in the junction. Using the
standard approach (Barone and Paternò (1982), ch 4), we find

Ic(ν) = 1

2πν
max
−π6ϑ6π

∫ 2πν

0
dφ IJ (φ + ϑ) (9)

and finally

Ic(ν)

I0
=


{ν}
2|ν| (1+ |Z| − 2{ν}) (06 {ν} < 1/2)

1− {ν}
2|ν| (−1+ |Z| + 2{ν}) (1/26 {ν} < 1)

(10)

† It is worth noting that in the case of a DND junction between two d-wave superconductors, the half-periodic
Josephson effect is present as well, but it disappears at certain orientations of the crystals. For example, if
the junction interface is parallel to thex2–y2-plane of both superconductors, thenZ(α) = ±(1− 4α/π). Here
0 6 α 6 π/2 is the angle between the nodal directions in the superconductors, and the effect is absent ifα = 0
or π/2.
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Figure 3. The systems used for the calculation of the imbalance function for different
orientations of the d-wave superconductor with respect to the interface: white regions on the
Fermi surface (in the normal metal) correspond to zero-modes, and shadowed regions correspond
to π -modes, or vice versa. (a) The interface parallel to thex2–y2-plane. (b) The interface
normal to thex2–y2-plane;θ is the angle between the SN interface and the nodal direction in
the x2–y2-plane.

where 0 6 {x} < 1 is the fractional part ofx (figure 4). The interference pattern
given by (10) is remarkable in that, while preserving the trademark triangular central
peak of an SNS junction, it presents a continuous transition from the standard period
80 (|Z| = 1) to 80/2 (|Z| = 0). This behaviour is clearly distinct from the pattern
in a 0–π tunnelling junction (a combination of a conventional and aπ -junction in parallel),
where the dependenceIc(8) ∼ sin2(π8/280)/|π8/280| was predicted (Kirtleyet al 1997)
and recently reported (Kouznetsovet al 1997).

So far we have not considered the effects of non-magnetic impurity scattering and finite
temperature. At finite temperatures, the conditionE � |1(i)| will be obeyed for almost all
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Figure 4. The magnetic interference pattern in an SND junction. The dependence of the critical
current density on8/80 is given for |Z| = 1, 0.9, . . . ,0 (top to bottom).

of the Fermi surface if

kBT ∼ E � |1(1)|;max|1(2)

k̂
|. (11)

Corrections to the current from the regions close to the nodal lines will be small, as they
are governed by the same parameter,kBT /max|1(2)

k̂
|. This additional condition on the

temperature is in fact less restrictive than the one following from (2).
Weak elastic scattering can be taken into account via the broadening of Andreev levels

due to the finite scattering time,τ = li/vF (Kulik and Mitsai 1975). Using the approach of
Kadigrobovet al (1995), we find forL/li, L/lT � 1

IJ (ϕ) =
∑
κ

2ev(κ)Fz

πL

∞∑
n=1

(−1)n+1 exp

[
−2n

L

l
(κ)
i

]
(L/l

(κ)
T ) sinnϕ̃(κ)

sinh(nL/l(κ)T )
(12)

(see figures 2(b), 2(c)). Herel(κ)i = liv
(κ)
Fz /vF and l(κ)T = lT v

(κ)
Fz /vF are the effective

scattering and coherence lengths in modeκ, respectively. The effect thus survives finite
temperature and weak elastic scattering in the normal layer.

In the limit of strong elastic scattering,L� li , or at higher temperatures,L� lT , the
sawtooth current–phase dependence in long SNS junctions reduces to a sinusoidal one (Kulik
and Mitsai 1975), and the effect disappears due to the cancellation of the contributions from
the zero- andπ -modes.

In conclusion, we have demonstrated that in a long clean SND junction two groups of
Andreev levels coexist, coupled to positive and negative lobes of the d-wave order parameter,
and thus with effective phases shifted byπ . (The relative weights of these groups depend on
the orientation of the d-wave superconductor with respect to the NS interface.) As a result,
the period of the Josephson current is halved, and the ac Josephson frequency doubles. The
magnetic interference pattern retains its triangular central peak, but becomes periodic with
period80/2 as a function of the external magnetic flux. The effect is robust with respect
to finite temperature and weak elastic scattering in the normal layer, and provides a new
tool for use in the investigation of pairing symmetry in unconventional superconductors.

I would like to thank I Affleck, D Bonn, A Dubin, D L Feder, I Herbut, S Kivelson,
M Oshikawa, and P C EStamp for fruitful discussions and criticism, and P F Bagwell and
Y Tanaka for kindly acquainting me with the results of their current research.
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